Artificial General Intelligence

Comments · 25 Views

Artificial basic intelligence (AGI) is a type of artificial intelligence (AI) that matches or surpasses human cognitive abilities across a wide variety of cognitive tasks.

Artificial general intelligence (AGI) is a kind of synthetic intelligence (AI) that matches or exceeds human cognitive abilities across a wide variety of cognitive tasks. This contrasts with narrow AI, which is restricted to specific jobs. [1] Artificial superintelligence (ASI), on the other hand, refers to AGI that considerably exceeds human cognitive capabilities. AGI is considered among the meanings of strong AI.


Creating AGI is a main objective of AI research study and of business such as OpenAI [2] and Meta. [3] A 2020 study recognized 72 active AGI research study and advancement jobs across 37 countries. [4]

The timeline for attaining AGI stays a topic of continuous argument among scientists and specialists. As of 2023, some argue that it might be possible in years or decades; others keep it might take a century or longer; a minority think it might never be attained; and another minority declares that it is currently here. [5] [6] Notable AI scientist Geoffrey Hinton has revealed issues about the quick progress towards AGI, suggesting it might be attained quicker than many anticipate. [7]

There is dispute on the precise definition of AGI and regarding whether modern-day large language models (LLMs) such as GPT-4 are early forms of AGI. [8] AGI is a common topic in sci-fi and futures studies. [9] [10]

Contention exists over whether AGI represents an existential threat. [11] [12] [13] Many specialists on AI have actually stated that reducing the threat of human extinction presented by AGI ought to be an international priority. [14] [15] Others discover the advancement of AGI to be too remote to provide such a risk. [16] [17]

Terminology


AGI is likewise understood as strong AI, [18] [19] complete AI, [20] human-level AI, [5] human-level intelligent AI, or general intelligent action. [21]

Some scholastic sources book the term "strong AI" for computer programs that experience sentience or archmageriseswiki.com consciousness. [a] On the other hand, weak AI (or narrow AI) has the ability to solve one particular issue however lacks general cognitive capabilities. [22] [19] Some academic sources use "weak AI" to refer more broadly to any programs that neither experience consciousness nor have a mind in the same sense as people. [a]

Related ideas include artificial superintelligence and transformative AI. A synthetic superintelligence (ASI) is a hypothetical type of AGI that is much more usually smart than human beings, [23] while the notion of transformative AI relates to AI having a big effect on society, for instance, similar to the farming or commercial transformation. [24]

A structure for categorizing AGI in levels was proposed in 2023 by Google DeepMind scientists. They define five levels of AGI: emerging, skilled, professional, virtuoso, and superhuman. For instance, a proficient AGI is defined as an AI that outperforms 50% of experienced adults in a broad variety of non-physical tasks, and a superhuman AGI (i.e. a synthetic superintelligence) is similarly specified but with a threshold of 100%. They consider big language designs like ChatGPT or LLaMA 2 to be circumstances of emerging AGI. [25]

Characteristics


Various popular definitions of intelligence have been proposed. One of the leading propositions is the Turing test. However, there are other popular meanings, and some scientists disagree with the more popular techniques. [b]

Intelligence traits


Researchers generally hold that intelligence is required to do all of the following: [27]

reason, usage strategy, fix puzzles, and make judgments under uncertainty
represent understanding, consisting of good sense understanding
plan
learn
- interact in natural language
- if necessary, incorporate these skills in completion of any provided goal


Many interdisciplinary methods (e.g. cognitive science, computational intelligence, and decision making) think about extra qualities such as imagination (the ability to form unique psychological images and principles) [28] and coastalplainplants.org autonomy. [29]

Computer-based systems that display much of these capabilities exist (e.g. see computational imagination, automated thinking, choice support group, robot, evolutionary computation, smart agent). There is dispute about whether modern-day AI systems have them to an adequate degree.


Physical characteristics


Other capabilities are thought about desirable in intelligent systems, as they might impact intelligence or help in its expression. These include: [30]

- the capability to sense (e.g. see, hear, and so on), and
- the capability to act (e.g. relocation and manipulate things, change area to explore, and so on).


This consists of the ability to identify and respond to risk. [31]

Although the capability to sense (e.g. see, hear, and so on) and the capability to act (e.g. relocation and manipulate items, change area to explore, etc) can be desirable for some smart systems, [30] these physical abilities are not strictly required for an entity to certify as AGI-particularly under the thesis that large language designs (LLMs) may already be or become AGI. Even from a less optimistic viewpoint on LLMs, there is no firm requirement for an AGI to have a human-like type; being a silicon-based computational system is sufficient, supplied it can process input (language) from the external world in location of human senses. This interpretation aligns with the understanding that AGI has actually never been proscribed a specific physical personification and therefore does not require a capability for locomotion or traditional "eyes and ears". [32]

Tests for human-level AGI


Several tests meant to validate human-level AGI have actually been thought about, consisting of: [33] [34]

The idea of the test is that the maker needs to attempt and pretend to be a male, by responding to concerns put to it, and it will just pass if the pretence is fairly persuading. A substantial part of a jury, who should not be expert about machines, must be taken in by the pretence. [37]

AI-complete issues


An issue is informally called "AI-complete" or "AI-hard" if it is thought that in order to solve it, one would need to implement AGI, because the option is beyond the abilities of a purpose-specific algorithm. [47]

There are many problems that have actually been conjectured to require general intelligence to resolve as well as humans. Examples include computer vision, natural language understanding, and dealing with unforeseen circumstances while solving any real-world problem. [48] Even a specific task like translation needs a maker to check out and compose in both languages, follow the author's argument (reason), understand the context (understanding), and faithfully reproduce the author's original intent (social intelligence). All of these issues need to be resolved simultaneously in order to reach human-level maker efficiency.


However, much of these tasks can now be performed by modern big language models. According to Stanford University's 2024 AI index, AI has actually reached human-level efficiency on lots of criteria for checking out understanding and visual reasoning. [49]

History


Classical AI


Modern AI research study began in the mid-1950s. [50] The first generation of AI researchers were convinced that synthetic basic intelligence was possible which it would exist in simply a few years. [51] AI leader Herbert A. Simon composed in 1965: "devices will be capable, within twenty years, of doing any work a man can do." [52]

Their forecasts were the inspiration for Stanley Kubrick and Arthur C. Clarke's character HAL 9000, who embodied what AI scientists thought they might create by the year 2001. AI leader Marvin Minsky was an expert [53] on the task of making HAL 9000 as realistic as possible according to the consensus predictions of the time. He stated in 1967, "Within a generation ... the issue of creating 'expert system' will substantially be resolved". [54]

Several classical AI projects, such as Doug Lenat's Cyc project (that began in 1984), and Allen Newell's Soar job, were directed at AGI.


However, in the early 1970s, it became apparent that researchers had actually grossly underestimated the trouble of the task. Funding companies became doubtful of AGI and put researchers under increasing pressure to produce helpful "used AI". [c] In the early 1980s, Japan's Fifth Generation Computer Project revived interest in AGI, setting out a ten-year timeline that included AGI objectives like "continue a table talk". [58] In response to this and the success of expert systems, both industry and federal government pumped cash into the field. [56] [59] However, confidence in AI amazingly collapsed in the late 1980s, and the goals of the Fifth Generation Computer Project were never ever fulfilled. [60] For the second time in 20 years, AI researchers who anticipated the impending achievement of AGI had been mistaken. By the 1990s, AI scientists had a reputation for making vain promises. They ended up being unwilling to make forecasts at all [d] and avoided mention of "human level" artificial intelligence for fear of being identified "wild-eyed dreamer [s]. [62]

Narrow AI research study


In the 1990s and early 21st century, mainstream AI accomplished commercial success and scholastic respectability by concentrating on specific sub-problems where AI can produce verifiable outcomes and business applications, such as speech acknowledgment and recommendation algorithms. [63] These "applied AI" systems are now used thoroughly throughout the technology industry, and research in this vein is heavily funded in both academia and industry. Since 2018 [upgrade], development in this field was thought about an emerging trend, and a fully grown stage was anticipated to be reached in more than 10 years. [64]

At the millenium, lots of traditional AI scientists [65] hoped that strong AI might be developed by combining programs that solve different sub-problems. Hans Moravec composed in 1988:


I am positive that this bottom-up route to expert system will one day meet the conventional top-down path more than half method, prepared to provide the real-world competence and the commonsense knowledge that has been so frustratingly evasive in thinking programs. Fully smart makers will result when the metaphorical golden spike is driven joining the two efforts. [65]

However, even at the time, this was contested. For example, Stevan Harnad of Princeton University concluded his 1990 paper on the sign grounding hypothesis by stating:


The expectation has often been voiced that "top-down" (symbolic) approaches to modeling cognition will somehow fulfill "bottom-up" (sensory) approaches somewhere in between. If the grounding considerations in this paper stand, then this expectation is hopelessly modular and there is really just one practical path from sense to symbols: from the ground up. A free-floating symbolic level like the software application level of a computer will never be reached by this path (or vice versa) - nor is it clear why we should even try to reach such a level, because it appears arriving would simply total up to uprooting our signs from their intrinsic significances (thus merely minimizing ourselves to the practical equivalent of a programmable computer system). [66]

Modern artificial general intelligence research study


The term "synthetic general intelligence" was utilized as early as 1997, by Mark Gubrud [67] in a conversation of the implications of totally automated military production and operations. A mathematical formalism of AGI was proposed by Marcus Hutter in 2000. Named AIXI, the proposed AGI agent maximises "the capability to please objectives in a wide variety of environments". [68] This kind of AGI, defined by the capability to maximise a mathematical meaning of intelligence rather than show human-like behaviour, [69] was also called universal expert system. [70]

The term AGI was re-introduced and popularized by Shane Legg and Ben Goertzel around 2002. [71] AGI research study activity in 2006 was described by Pei Wang and Ben Goertzel [72] as "producing publications and initial results". The very first summer season school in AGI was organized in Xiamen, China in 2009 [73] by the Xiamen university's Artificial Brain Laboratory and OpenCog. The first university course was given up 2010 [74] and 2011 [75] at Plovdiv University, Bulgaria by Todor Arnaudov. MIT presented a course on AGI in 2018, organized by Lex Fridman and including a number of visitor speakers.


Since 2023 [upgrade], a little number of computer researchers are active in AGI research study, and lots of add to a series of AGI conferences. However, increasingly more scientists are interested in open-ended knowing, [76] [77] which is the idea of permitting AI to continually find out and innovate like people do.


Feasibility


As of 2023, the development and possible achievement of AGI stays a subject of extreme debate within the AI community. While traditional consensus held that AGI was a remote goal, current advancements have actually led some scientists and industry figures to claim that early forms of AGI may currently exist. [78] AI leader Herbert A. Simon hypothesized in 1965 that "machines will be capable, within twenty years, of doing any work a man can do". This forecast failed to come real. Microsoft co-founder Paul Allen believed that such intelligence is unlikely in the 21st century since it would require "unforeseeable and basically unpredictable advancements" and a "clinically deep understanding of cognition". [79] Writing in The Guardian, roboticist Alan Winfield declared the gulf in between contemporary computing and human-level artificial intelligence is as broad as the gulf between present space flight and useful faster-than-light spaceflight. [80]

A more obstacle is the lack of clearness in defining what intelligence requires. Does it require awareness? Must it show the ability to set goals along with pursue them? Is it simply a matter of scale such that if model sizes increase sufficiently, intelligence will emerge? Are centers such as planning, reasoning, and causal understanding required? Does intelligence need clearly reproducing the brain and its specific faculties? Does it need feelings? [81]

Most AI researchers believe strong AI can be attained in the future, but some thinkers, like Hubert Dreyfus and Roger Penrose, deny the possibility of achieving strong AI. [82] [83] John McCarthy is among those who think human-level AI will be achieved, but that the present level of development is such that a date can not accurately be forecasted. [84] AI professionals' views on the feasibility of AGI wax and subside. Four surveys conducted in 2012 and 2013 recommended that the median estimate among specialists for when they would be 50% confident AGI would show up was 2040 to 2050, depending upon the survey, with the mean being 2081. Of the specialists, 16.5% addressed with "never" when asked the same question but with a 90% self-confidence rather. [85] [86] Further present AGI development factors to consider can be discovered above Tests for validating human-level AGI.


A report by Stuart Armstrong and Kaj Sotala of the Machine Intelligence Research Institute found that "over [a] 60-year time frame there is a strong predisposition towards predicting the arrival of human-level AI as between 15 and 25 years from the time the forecast was made". They analyzed 95 predictions made between 1950 and 2012 on when human-level AI will come about. [87]

In 2023, Microsoft researchers released a comprehensive examination of GPT-4. They concluded: "Given the breadth and depth of GPT-4's capabilities, we believe that it might fairly be deemed an early (yet still insufficient) variation of a synthetic basic intelligence (AGI) system." [88] Another study in 2023 reported that GPT-4 outshines 99% of humans on the Torrance tests of imaginative thinking. [89] [90]

Blaise Agüera y Arcas and Peter Norvig composed in 2023 that a substantial level of basic intelligence has already been accomplished with frontier designs. They wrote that unwillingness to this view comes from four main reasons: a "healthy apprehension about metrics for AGI", an "ideological commitment to alternative AI theories or methods", a "dedication to human (or biological) exceptionalism", or a "issue about the financial ramifications of AGI". [91]

2023 also marked the emergence of big multimodal models (big language models capable of processing or generating several methods such as text, audio, and images). [92]

In 2024, OpenAI launched o1-preview, the very first of a series of models that "invest more time thinking before they respond". According to Mira Murati, this capability to think before responding represents a new, additional paradigm. It improves design outputs by spending more computing power when creating the response, whereas the design scaling paradigm improves outputs by increasing the design size, training information and training calculate power. [93] [94]

An OpenAI worker, Vahid Kazemi, claimed in 2024 that the company had attained AGI, mentioning, "In my opinion, we have actually already achieved AGI and it's much more clear with O1." Kazemi clarified that while the AI is not yet "much better than any human at any task", it is "better than many people at most tasks." He likewise dealt with criticisms that big language designs (LLMs) simply follow predefined patterns, comparing their knowing process to the clinical technique of observing, assuming, and confirming. These statements have actually sparked debate, as they depend on a broad and non-traditional meaning of AGI-traditionally comprehended as AI that matches human intelligence across all domains. Critics argue that, while OpenAI's designs show impressive versatility, they might not totally meet this requirement. Notably, Kazemi's remarks came shortly after OpenAI removed "AGI" from the terms of its partnership with Microsoft, prompting speculation about the business's tactical objectives. [95]

Timescales


Progress in expert system has traditionally gone through periods of rapid development separated by durations when development appeared to stop. [82] Ending each hiatus were basic advances in hardware, software or both to create space for more progress. [82] [98] [99] For example, the computer system hardware readily available in the twentieth century was not sufficient to carry out deep learning, which needs great deals of GPU-enabled CPUs. [100]

In the intro to his 2006 book, [101] Goertzel states that quotes of the time required before a truly versatile AGI is constructed vary from 10 years to over a century. Since 2007 [update], the agreement in the AGI research study neighborhood appeared to be that the timeline gone over by Ray Kurzweil in 2005 in The Singularity is Near [102] (i.e. between 2015 and 2045) was plausible. [103] Mainstream AI scientists have given a large range of viewpoints on whether progress will be this fast. A 2012 meta-analysis of 95 such viewpoints found a predisposition towards forecasting that the beginning of AGI would occur within 16-26 years for contemporary and historic forecasts alike. That paper has been criticized for how it categorized viewpoints as specialist or non-expert. [104]

In 2012, Alex Krizhevsky, Ilya Sutskever, and Geoffrey Hinton developed a neural network called AlexNet, which won the ImageNet competitors with a top-5 test error rate of 15.3%, substantially better than the second-best entry's rate of 26.3% (the standard method used a weighted sum of ratings from various pre-defined classifiers). [105] AlexNet was related to as the initial ground-breaker of the existing deep knowing wave. [105]

In 2017, researchers Feng Liu, Yong Shi, and Ying Liu conducted intelligence tests on publicly offered and freely available weak AI such as Google AI, Apple's Siri, and others. At the maximum, these AIs reached an IQ worth of about 47, which corresponds roughly to a six-year-old kid in first grade. A grownup concerns about 100 typically. Similar tests were brought out in 2014, with the IQ score reaching an optimum worth of 27. [106] [107]

In 2020, OpenAI developed GPT-3, a language model efficient in performing lots of diverse jobs without particular training. According to Gary Grossman in a VentureBeat post, while there is agreement that GPT-3 is not an example of AGI, it is thought about by some to be too advanced to be classified as a narrow AI system. [108]

In the same year, Jason Rohrer utilized his GPT-3 account to develop a chatbot, and provided a chatbot-developing platform called "Project December". OpenAI requested modifications to the chatbot to adhere to their security guidelines; Rohrer disconnected Project December from the GPT-3 API. [109]

In 2022, DeepMind developed Gato, a "general-purpose" system capable of performing more than 600 various jobs. [110]

In 2023, Microsoft Research published a study on an early version of OpenAI's GPT-4, contending that it exhibited more general intelligence than previous AI designs and showed human-level performance in tasks spanning multiple domains, such as mathematics, coding, and law. This research study sparked a debate on whether GPT-4 might be thought about an early, insufficient version of artificial general intelligence, highlighting the requirement for more exploration and evaluation of such systems. [111]

In 2023, the AI researcher Geoffrey Hinton stated that: [112]

The idea that this stuff could in fact get smarter than individuals - a few individuals thought that, [...] But many people believed it was way off. And I thought it was way off. I believed it was 30 to 50 years or perhaps longer away. Obviously, I no longer think that.


In May 2023, Demis Hassabis likewise stated that "The development in the last couple of years has been quite amazing", and that he sees no factor why it would decrease, anticipating AGI within a years or perhaps a couple of years. [113] In March 2024, Nvidia's CEO, Jensen Huang, specified his expectation that within 5 years, AI would be capable of passing any test at least in addition to people. [114] In June 2024, the AI researcher Leopold Aschenbrenner, a former OpenAI staff member, estimated AGI by 2027 to be "strikingly possible". [115]

Whole brain emulation


While the development of transformer models like in ChatGPT is considered the most promising course to AGI, [116] [117] entire brain emulation can work as an alternative approach. With whole brain simulation, a brain model is built by scanning and mapping a biological brain in information, and then copying and mimicing it on a computer system or another computational gadget. The simulation model must be adequately faithful to the initial, so that it acts in almost the very same method as the initial brain. [118] Whole brain emulation is a type of brain simulation that is gone over in computational neuroscience and neuroinformatics, and for medical research study functions. It has actually been talked about in expert system research [103] as an approach to strong AI. Neuroimaging innovations that might provide the needed in-depth understanding are improving rapidly, and futurist Ray Kurzweil in the book The Singularity Is Near [102] predicts that a map of enough quality will appear on a similar timescale to the computing power needed to imitate it.


Early approximates


For low-level brain simulation, an extremely effective cluster of computer systems or GPUs would be required, given the huge quantity of synapses within the human brain. Each of the 1011 (one hundred billion) nerve cells has on average 7,000 synaptic connections (synapses) to other nerve cells. The brain of a three-year-old child has about 1015 synapses (1 quadrillion). This number declines with age, supporting by their adult years. Estimates differ for an adult, varying from 1014 to 5 × 1014 synapses (100 to 500 trillion). [120] A price quote of the brain's processing power, based on a basic switch design for nerve cell activity, is around 1014 (100 trillion) synaptic updates per second (SUPS). [121]

In 1997, Kurzweil took a look at different quotes for the hardware needed to equal the human brain and embraced a figure of 1016 computations per 2nd (cps). [e] (For comparison, if a "calculation" was equivalent to one "floating-point operation" - a step utilized to rate current supercomputers - then 1016 "calculations" would be comparable to 10 petaFLOPS, achieved in 2011, while 1018 was accomplished in 2022.) He utilized this figure to anticipate the necessary hardware would be readily available at some point between 2015 and 2025, if the exponential growth in computer power at the time of composing continued.


Current research


The Human Brain Project, an EU-funded initiative active from 2013 to 2023, has actually developed an especially in-depth and openly accessible atlas of the human brain. [124] In 2023, scientists from Duke University carried out a high-resolution scan of a mouse brain.


Criticisms of simulation-based techniques


The artificial nerve cell design presumed by Kurzweil and utilized in lots of current synthetic neural network executions is simple compared with biological neurons. A brain simulation would likely have to record the in-depth cellular behaviour of biological nerve cells, presently understood only in broad summary. The overhead presented by complete modeling of the biological, chemical, and physical information of neural behaviour (specifically on a molecular scale) would require computational powers several orders of magnitude bigger than Kurzweil's price quote. In addition, the estimates do not account for glial cells, which are known to play a function in cognitive processes. [125]

An essential criticism of the simulated brain method stems from embodied cognition theory which asserts that human personification is a necessary aspect of human intelligence and is necessary to ground significance. [126] [127] If this theory is correct, any totally practical brain model will need to incorporate more than simply the nerve cells (e.g., a robotic body). Goertzel [103] proposes virtual personification (like in metaverses like Second Life) as an option, but it is unknown whether this would suffice.


Philosophical point of view


"Strong AI" as defined in viewpoint


In 1980, thinker John Searle created the term "strong AI" as part of his Chinese room argument. [128] He proposed a distinction between two hypotheses about expert system: [f]

Strong AI hypothesis: An expert system system can have "a mind" and "consciousness".
Weak AI hypothesis: An expert system system can (only) act like it thinks and has a mind and consciousness.


The very first one he called "strong" because it makes a more powerful declaration: it presumes something unique has actually occurred to the maker that exceeds those capabilities that we can evaluate. The behaviour of a "weak AI" device would be exactly similar to a "strong AI" maker, but the latter would likewise have subjective mindful experience. This usage is likewise typical in scholastic AI research and books. [129]

In contrast to Searle and traditional AI, some futurists such as Ray Kurzweil use the term "strong AI" to indicate "human level artificial basic intelligence". [102] This is not the like Searle's strong AI, unless it is assumed that awareness is needed for human-level AGI. Academic thinkers such as Searle do not believe that holds true, and to most expert system scientists the question is out-of-scope. [130]

Mainstream AI is most interested in how a program behaves. [131] According to Russell and Norvig, "as long as the program works, they don't care if you call it genuine or a simulation." [130] If the program can act as if it has a mind, then there is no need to understand if it in fact has mind - certainly, there would be no other way to tell. For AI research study, Searle's "weak AI hypothesis" is equivalent to the statement "synthetic general intelligence is possible". Thus, according to Russell and Norvig, "most AI scientists take the weak AI hypothesis for given, and do not care about the strong AI hypothesis." [130] Thus, for scholastic AI research, "Strong AI" and "AGI" are two different things.


Consciousness


Consciousness can have numerous meanings, and some aspects play significant roles in sci-fi and the principles of expert system:


Sentience (or "extraordinary awareness"): The capability to "feel" perceptions or feelings subjectively, rather than the capability to reason about perceptions. Some theorists, such as David Chalmers, use the term "awareness" to refer specifically to incredible consciousness, which is roughly equivalent to life. [132] Determining why and how subjective experience arises is known as the hard problem of awareness. [133] Thomas Nagel described in 1974 that it "feels like" something to be conscious. If we are not conscious, then it doesn't seem like anything. Nagel utilizes the example of a bat: we can sensibly ask "what does it seem like to be a bat?" However, we are unlikely to ask "what does it seem like to be a toaster?" Nagel concludes that a bat seems conscious (i.e., has awareness) but a toaster does not. [134] In 2022, a Google engineer claimed that the company's AI chatbot, LaMDA, had actually achieved life, though this claim was commonly contested by other experts. [135]

Self-awareness: To have mindful awareness of oneself as a separate person, specifically to be consciously mindful of one's own thoughts. This is opposed to just being the "subject of one's thought"-an operating system or debugger has the ability to be "knowledgeable about itself" (that is, to represent itself in the same method it represents everything else)-but this is not what individuals usually suggest when they use the term "self-awareness". [g]

These traits have an ethical dimension. AI sentience would generate issues of well-being and legal security, likewise to animals. [136] Other elements of consciousness associated to cognitive capabilities are also pertinent to the concept of AI rights. [137] Finding out how to incorporate advanced AI with existing legal and social frameworks is an emergent problem. [138]

Benefits


AGI could have a wide array of applications. If oriented towards such objectives, AGI might assist mitigate various problems in the world such as cravings, hardship and health issue. [139]

AGI might improve performance and effectiveness in the majority of tasks. For example, in public health, AGI might speed up medical research study, notably versus cancer. [140] It might take care of the senior, [141] and equalize access to rapid, top quality medical diagnostics. It might provide fun, cheap and personalized education. [141] The requirement to work to subsist could end up being outdated if the wealth produced is appropriately rearranged. [141] [142] This likewise raises the concern of the location of humans in a drastically automated society.


AGI might also assist to make logical choices, and to expect and prevent disasters. It might also assist to profit of potentially devastating innovations such as nanotechnology or environment engineering, while avoiding the associated risks. [143] If an AGI's primary objective is to prevent existential catastrophes such as human extinction (which could be difficult if the Vulnerable World Hypothesis turns out to be real), [144] it could take procedures to significantly reduce the threats [143] while lessening the impact of these procedures on our quality of life.


Risks


Existential dangers


AGI may represent multiple types of existential risk, which are dangers that threaten "the early extinction of Earth-originating intelligent life or the long-term and drastic damage of its capacity for desirable future advancement". [145] The threat of human termination from AGI has actually been the topic of numerous debates, but there is also the possibility that the advancement of AGI would lead to a completely flawed future. Notably, it could be used to spread out and protect the set of worths of whoever establishes it. If humankind still has moral blind areas similar to slavery in the past, AGI might irreversibly entrench it, preventing moral progress. [146] Furthermore, AGI could help with mass surveillance and brainwashing, which might be utilized to develop a stable repressive worldwide totalitarian routine. [147] [148] There is likewise a threat for the devices themselves. If devices that are sentient or otherwise worthwhile of ethical consideration are mass developed in the future, participating in a civilizational path that indefinitely ignores their well-being and interests might be an existential disaster. [149] [150] Considering just how much AGI could enhance humankind's future and aid reduce other existential risks, Toby Ord calls these existential threats "an argument for proceeding with due care", not for "abandoning AI". [147]

Risk of loss of control and human termination


The thesis that AI presents an existential risk for human beings, which this danger requires more attention, is questionable but has actually been endorsed in 2023 by lots of public figures, AI scientists and CEOs of AI companies such as Elon Musk, Bill Gates, Geoffrey Hinton, Yoshua Bengio, Demis Hassabis and Sam Altman. [151] [152]

In 2014, Stephen Hawking slammed prevalent indifference:


So, facing possible futures of enormous benefits and risks, the specialists are undoubtedly doing everything possible to make sure the very best result, right? Wrong. If a remarkable alien civilisation sent us a message stating, 'We'll arrive in a few years,' would we simply respond, 'OK, call us when you get here-we'll leave the lights on?' Probably not-but this is basically what is occurring with AI. [153]

The potential fate of humankind has often been compared to the fate of gorillas threatened by human activities. The comparison states that greater intelligence enabled mankind to dominate gorillas, which are now susceptible in manner ins which they might not have actually prepared for. As an outcome, the gorilla has actually become a threatened types, not out of malice, however merely as a collateral damage from human activities. [154]

The skeptic Yann LeCun thinks about that AGIs will have no desire to dominate mankind and that we should take care not to anthropomorphize them and analyze their intents as we would for humans. He stated that people won't be "wise enough to design super-intelligent machines, yet unbelievably silly to the point of providing it moronic goals without any safeguards". [155] On the other side, the concept of instrumental merging suggests that practically whatever their objectives, intelligent agents will have reasons to try to endure and obtain more power as intermediary steps to achieving these objectives. Which this does not require having emotions. [156]

Many scholars who are concerned about existential danger advocate for more research into resolving the "control problem" to address the question: what kinds of safeguards, algorithms, or architectures can programmers execute to maximise the likelihood that their recursively-improving AI would continue to behave in a friendly, rather than destructive, way after it reaches superintelligence? [157] [158] Solving the control issue is made complex by the AI arms race (which might lead to a race to the bottom of safety precautions in order to release items before competitors), [159] and using AI in weapon systems. [160]

The thesis that AI can position existential danger likewise has critics. Skeptics normally state that AGI is unlikely in the short-term, or that concerns about AGI distract from other problems related to present AI. [161] Former Google scams czar Shuman Ghosemajumder thinks about that for lots of people beyond the technology industry, existing chatbots and LLMs are already viewed as though they were AGI, causing further misconception and worry. [162]

Skeptics often charge that the thesis is crypto-religious, with an illogical belief in the possibility of superintelligence replacing an illogical belief in an omnipotent God. [163] Some researchers believe that the communication campaigns on AI existential risk by specific AI groups (such as OpenAI, Anthropic, DeepMind, and Conjecture) may be an at effort at regulatory capture and to pump up interest in their products. [164] [165]

In 2023, the CEOs of Google DeepMind, OpenAI and Anthropic, together with other market leaders and scientists, released a joint statement asserting that "Mitigating the risk of termination from AI need to be an international concern together with other societal-scale risks such as pandemics and nuclear war." [152]

Mass unemployment


Researchers from OpenAI estimated that "80% of the U.S. labor force might have at least 10% of their work tasks impacted by the introduction of LLMs, while around 19% of workers might see at least 50% of their tasks impacted". [166] [167] They consider workplace employees to be the most exposed, for instance mathematicians, accounting professionals or web designers. [167] AGI could have a better autonomy, capability to make decisions, to user interface with other computer tools, but also to control robotized bodies.


According to Stephen Hawking, the result of automation on the quality of life will depend on how the wealth will be redistributed: [142]

Everyone can take pleasure in a life of elegant leisure if the machine-produced wealth is shared, or many people can end up badly poor if the machine-owners successfully lobby versus wealth redistribution. Up until now, the trend seems to be towards the second choice, with innovation driving ever-increasing inequality


Elon Musk thinks about that the automation of society will need federal governments to embrace a universal basic income. [168]

See likewise


Artificial brain - Software and hardware with cognitive abilities comparable to those of the animal or human brain
AI effect
AI security - Research area on making AI safe and useful
AI positioning - AI conformance to the intended goal
A.I. Rising - 2018 film directed by Lazar Bodroža
Expert system
Automated artificial intelligence - Process of automating the application of machine knowing
BRAIN Initiative - Collaborative public-private research study effort announced by the Obama administration
China Brain Project
Future of Humanity Institute - Defunct Oxford interdisciplinary research study centre
General game playing - Ability of artificial intelligence to play different games
Generative expert system - AI system efficient in creating content in action to prompts
Human Brain Project - Scientific research task
Intelligence amplification - Use of info technology to enhance human intelligence (IA).
Machine ethics - Moral behaviours of manufactured devices.
Moravec's paradox.
Multi-task learning - Solving several maker finding out jobs at the exact same time.
Neural scaling law - Statistical law in maker knowing.
Outline of synthetic intelligence - Overview of and topical guide to artificial intelligence.
Transhumanism - Philosophical movement.
Synthetic intelligence - Alternate term for or kind of synthetic intelligence.
Transfer knowing - Artificial intelligence method.
Loebner Prize - Annual AI competition.
Hardware for artificial intelligence - Hardware specially created and optimized for synthetic intelligence.
Weak artificial intelligence - Form of expert system.


Notes


^ a b See below for the origin of the term "strong AI", and see the academic meaning of "strong AI" and weak AI in the post Chinese space.
^ AI creator John McCarthy writes: "we can not yet define in basic what sort of computational procedures we wish to call smart. " [26] (For a conversation of some definitions of intelligence used by expert system researchers, see viewpoint of synthetic intelligence.).
^ The Lighthill report specifically slammed AI's "grandiose goals" and led the dismantling of AI research study in England. [55] In the U.S., DARPA became determined to fund only "mission-oriented direct research study, rather than fundamental undirected research study". [56] [57] ^ As AI creator John McCarthy composes "it would be a great relief to the remainder of the workers in AI if the creators of new basic formalisms would reveal their hopes in a more safeguarded type than has in some cases been the case." [61] ^ In "Mind Children" [122] 1015 cps is utilized. More just recently, in 1997, [123] Moravec argued for 108 MIPS which would roughly correspond to 1014 cps. Moravec talks in terms of MIPS, not "cps", which is a non-standard term Kurzweil introduced.
^ As specified in a standard AI book: "The assertion that machines might perhaps act smartly (or, perhaps much better, act as if they were smart) is called the 'weak AI' hypothesis by thinkers, and the assertion that machines that do so are in fact thinking (as opposed to replicating thinking) is called the 'strong AI' hypothesis." [121] ^ Alan Turing made this point in 1950. [36] References


^ Krishna, Sri (9 February 2023). "What is synthetic narrow intelligence (ANI)?". VentureBeat. Retrieved 1 March 2024. ANI is created to carry out a single job.
^ "OpenAI Charter". OpenAI. Retrieved 6 April 2023. Our mission is to make sure that artificial general intelligence benefits all of humankind.
^ Heath, Alex (18 January 2024). "Mark Zuckerberg's brand-new objective is creating artificial general intelligence". The Verge. Retrieved 13 June 2024. Our vision is to develop AI that is much better than human-level at all of the human senses.
^ Baum, Seth D. (2020 ). A Study of Artificial General Intelligence Projects for Ethics, Risk, and Policy (PDF) (Report). Global Catastrophic Risk Institute. Retrieved 28 November 2024. 72 AGI R&D projects were determined as being active in 2020.
^ a b c "AI timelines: What do specialists in expert system anticipate for the future?". Our World in Data. Retrieved 6 April 2023.
^ Metz, Cade (15 May 2023). "Some Researchers Say A.I. Is Already Here, Stirring Debate in Tech Circles". The New York Times. Retrieved 18 May 2023.
^ "AI pioneer Geoffrey Hinton gives up Google and alerts of danger ahead". The New York Times. 1 May 2023. Retrieved 2 May 2023. It is difficult to see how you can avoid the bad stars from using it for bad things.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric (2023 ). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv preprint. arXiv:2303.12712. GPT-4 shows stimulates of AGI.
^ Butler, Octavia E. (1993 ). Parable of the Sower. Grand Central Publishing. ISBN 978-0-4466-7550-5. All that you touch you alter. All that you change modifications you.
^ Vinge, Vernor (1992 ). A Fire Upon the Deep. Tor Books. ISBN 978-0-8125-1528-2. The Singularity is coming.
^ Morozov, Evgeny (30 June 2023). "The True Threat of Expert System". The New York Times. The real danger is not AI itself however the way we release it.
^ "Impressed by expert system? Experts say AGI is following, and it has 'existential' risks". ABC News. 23 March 2023. Retrieved 6 April 2023. AGI could present existential threats to humankind.
^ Bostrom, Nick (2014 ). Superintelligence: Paths, Dangers, Strategies. Oxford University Press. ISBN 978-0-1996-7811-2. The very first superintelligence will be the last invention that humanity needs to make.
^ Roose, Kevin (30 May 2023). "A.I. Poses 'Risk of Extinction,' Industry Leaders Warn". The New York Times. Mitigating the threat of extinction from AI should be an international top priority.
^ "Statement on AI Risk". Center for AI Safety. Retrieved 1 March 2024. AI professionals warn of risk of extinction from AI.
^ Mitchell, Melanie (30 May 2023). "Are AI's Doomsday Scenarios Worth Taking Seriously?". The New York City Times. We are far from developing makers that can outthink us in general methods.
^ LeCun, Yann (June 2023). "AGI does not provide an existential risk". Medium. There is no factor to fear AI as an existential threat.
^ Kurzweil 2005, p. 260.
^ a b Kurzweil, Ray (5 August 2005), "Long Live AI", Forbes, archived from the original on 14 August 2005: Kurzweil describes strong AI as "maker intelligence with the full range of human intelligence.".
^ "The Age of Expert System: George John at TEDxLondonBusinessSchool 2013". Archived from the original on 26 February 2014. Retrieved 22 February 2014.
^ Newell & Simon 1976, This is the term they use for "human-level" intelligence in the physical sign system hypothesis.
^ "The Open University on Strong and Weak AI". Archived from the initial on 25 September 2009. Retrieved 8 October 2007.
^ "What is synthetic superintelligence (ASI)?|Definition from TechTarget". Enterprise AI. Retrieved 8 October 2023.
^ "Artificial intelligence is changing our world - it is on all of us to ensure that it goes well". Our World in Data. Retrieved 8 October 2023.
^ Dickson, Ben (16 November 2023). "Here is how far we are to attaining AGI, according to DeepMind". VentureBeat.
^ McCarthy, John (2007a). "Basic Questions". Stanford University. Archived from the initial on 26 October 2007. Retrieved 6 December 2007.
^ This list of smart qualities is based upon the subjects covered by major AI textbooks, including: Russell & Norvig 2003, Luger & Stubblefield 2004, Poole, Mackworth & Goebel 1998 and Nilsson 1998.
^ Johnson 1987.
^ de Charms, R. (1968 ). Personal causation. New York: Academic Press.
^ a b Pfeifer, R. and Bongard J. C., How the body shapes the method we think: a brand-new view of intelligence (The MIT Press, 2007). ISBN 0-2621-6239-3.
^ White, R. W. (1959 ). "Motivation reassessed: The idea of skills". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ White, R. W. (1959 ). "Motivation reconsidered: The idea of competence". Psychological Review. 66 (5 ): 297-333. doi:10.1037/ h0040934. PMID 13844397. S2CID 37385966.
^ Muehlhauser, Luke (11 August 2013). "What is AGI?". Machine Intelligence Research Institute. Archived from the initial on 25 April 2014. Retrieved 1 May 2014.
^ "What is Artificial General Intelligence (AGI)?|4 Tests For Ensuring Artificial General Intelligence". Talky Blog. 13 July 2019. Archived from the original on 17 July 2019. Retrieved 17 July 2019.
^ Kirk-Giannini, Cameron Domenico; Goldstein, Simon (16 October 2023). "AI is closer than ever to passing the Turing test for 'intelligence'. What happens when it does?". The Conversation. Retrieved 22 September 2024.
^ a b Turing 1950.
^ Turing, Alan (1952 ). B. Jack Copeland (ed.). Can Automatic Calculating Machines Be Said To Think?. Oxford: Oxford University Press. pp. 487-506. ISBN 978-0-1982-5079-1.
^ "Eugene Goostman is a genuine boy - the Turing Test says so". The Guardian. 9 June 2014. ISSN 0261-3077. Retrieved 3 March 2024.
^ "Scientists contest whether computer 'Eugene Goostman' passed Turing test". BBC News. 9 June 2014. Retrieved 3 March 2024.
^ Jones, Cameron R.; Bergen, Benjamin K. (9 May 2024). "People can not differentiate GPT-4 from a human in a Turing test". arXiv:2405.08007 [cs.HC]
^ Varanasi, Lakshmi (21 March 2023). "AI models like ChatGPT and GPT-4 are acing whatever from the bar exam to AP Biology. Here's a list of tough exams both AI variations have passed". Business Insider. Retrieved 30 May 2023.
^ Naysmith, Caleb (7 February 2023). "6 Jobs Artificial Intelligence Is Already Replacing and How Investors Can Profit From It". Retrieved 30 May 2023.
^ Turk, Victoria (28 January 2015). "The Plan to Replace the Turing Test with a 'Turing Olympics'". Vice. Retrieved 3 March 2024.
^ Gopani, Avi (25 May 2022). "Turing Test is unreliable. The Winograd Schema is obsolete. Coffee is the response". Analytics India Magazine. Retrieved 3 March 2024.
^ Bhaimiya, Sawdah (20 June 2023). "DeepMind's co-founder recommended testing an AI chatbot's capability to turn $100,000 into $1 million to measure human-like intelligence". Business Insider. Retrieved 3 March 2024.
^ Suleyman, Mustafa (14 July 2023). "Mustafa Suleyman: My new Turing test would see if AI can make $1 million". MIT Technology Review. Retrieved 3 March 2024.
^ Shapiro, Stuart C. (1992 ). "Artificial Intelligence" (PDF). In Stuart C. Shapiro (ed.). Encyclopedia of Artificial Intelligence (Second ed.). New York City: John Wiley. pp. 54-57. Archived (PDF) from the original on 1 February 2016. (Section 4 is on "AI-Complete Tasks".).
^ Yampolskiy, Roman V. (2012 ). Xin-She Yang (ed.). "Turing Test as a Defining Feature of AI-Completeness" (PDF). Expert System, Evolutionary Computation and Metaheuristics (AIECM): 3-17. Archived (PDF) from the original on 22 May 2013.
^ "AI Index: State of AI in 13 Charts". Stanford University Human-Centered Artificial Intelligence. 15 April 2024. Retrieved 27 May 2024.
^ Crevier 1993, pp. 48-50.
^ Kaplan, Andreas (2022 ). "Artificial Intelligence, Business and Civilization - Our Fate Made in Machines". Archived from the initial on 6 May 2022. Retrieved 12 March 2022.
^ Simon 1965, p. 96 estimated in Crevier 1993, p. 109.
^ "Scientist on the Set: An Interview with Marvin Minsky". Archived from the original on 16 July 2012. Retrieved 5 April 2008.
^ Marvin Minsky to Darrach (1970 ), quoted in Crevier (1993, p. 109).
^ Lighthill 1973; Howe 1994.
^ a b NRC 1999, "Shift to Applied Research Increases Investment".
^ Crevier 1993, pp. 115-117; Russell & Norvig 2003, pp. 21-22.
^ Crevier 1993, p. 211, Russell & Norvig 2003, p. 24 and see also Feigenbaum & McCorduck 1983.
^ Crevier 1993, pp. 161-162, 197-203, 240; Russell & Norvig 2003, p. 25.
^ Crevier 1993, pp. 209-212.
^ McCarthy, John (2000 ). "Reply to Lighthill". Stanford University. Archived from the initial on 30 September 2008. Retrieved 29 September 2007.
^ Markoff, John (14 October 2005). "Behind Artificial Intelligence, a Squadron of Bright Real People". The New York Times. Archived from the initial on 2 February 2023. Retrieved 18 February 2017. At its low point, some computer system researchers and software application engineers prevented the term synthetic intelligence for worry of being deemed wild-eyed dreamers.
^ Russell & Norvig 2003, pp. 25-26
^ "Trends in the Emerging Tech Hype Cycle". Gartner Reports. Archived from the initial on 22 May 2019. Retrieved 7 May 2019.
^ a b Moravec 1988, p. 20
^ Harnad, S. (1990 ). "The Symbol Grounding Problem". Physica D. 42 (1-3): 335-346. arXiv: cs/9906002. Bibcode:1990 PhyD ... 42..335 H. doi:10.1016/ 0167-2789( 90 )90087-6. S2CID 3204300.
^ Gubrud 1997
^ Hutter, Marcus (2005 ). Universal Expert System: Sequential Decisions Based Upon Algorithmic Probability. Texts in Theoretical Computer Science an EATCS Series. Springer. doi:10.1007/ b138233. ISBN 978-3-5402-6877-2. S2CID 33352850. Archived from the initial on 19 July 2022. Retrieved 19 July 2022.
^ Legg, Shane (2008 ). Machine Super Intelligence (PDF) (Thesis). University of Lugano. Archived (PDF) from the initial on 15 June 2022. Retrieved 19 July 2022.
^ Goertzel, Ben (2014 ). Artificial General Intelligence. Lecture Notes in Computer Technology. Vol. 8598. Journal of Artificial General Intelligence. doi:10.1007/ 978-3-319-09274-4. ISBN 978-3-3190-9273-7. S2CID 8387410.
^ "Who created the term "AGI"?". goertzel.org. Archived from the original on 28 December 2018. Retrieved 28 December 2018., by means of Life 3.0: 'The term "AGI" was popularized by ... Shane Legg, Mark Gubrud and Ben Goertzel'
^ Wang & Goertzel 2007
^ "First International Summer School in Artificial General Intelligence, Main summer school: June 22 - July 3, 2009, OpenCog Lab: July 6-9, 2009". Archived from the initial on 28 September 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2009/2010 - пролетен триместър" [Elective courses 2009/2010 - spring trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ "Избираеми дисциплини 2010/2011 - зимен триместър" [Elective courses 2010/2011 - winter season trimester] Факултет по математика и информатика [Faculty of Mathematics and Informatics] (in Bulgarian). Archived from the initial on 26 July 2020. Retrieved 11 May 2020.
^ Shevlin, Henry; Vold, Karina; Crosby, Matthew; Halina, Marta (4 October 2019). "The limits of machine intelligence: Despite progress in maker intelligence, artificial general intelligence is still a significant obstacle". EMBO Reports. 20 (10 ): e49177. doi:10.15252/ embr.201949177. ISSN 1469-221X. PMC 6776890. PMID 31531926.
^ Bubeck, Sébastien; Chandrasekaran, Varun; Eldan, Ronen; Gehrke, Johannes; Horvitz, Eric; Kamar, Ece; Lee, Peter; Lee, Yin Tat; Li, Yuanzhi; Lundberg, Scott; Nori, Harsha; Palangi, Hamid; Ribeiro, Marco Tulio; Zhang, Yi (27 March 2023). "Sparks of Artificial General Intelligence: Early experiments with GPT-4". arXiv:2303.12712 [cs.CL]
^ "Microsoft Researchers Claim GPT-4 Is Showing "Sparks" of AGI". Futurism. 23 March 2023. Retrieved 13 December 2023.
^ Allen, Paul; Greaves, Mark (12 October 2011). "The Singularity Isn't Near". MIT Technology Review. Retrieved 17 September 2014.
^ Winfield, Alan. "Expert system will not develop into a Frankenstein's monster". The Guardian. Archived from the original on 17 September 2014. Retrieved 17 September 2014.
^ Deane, George (2022 ). "Machines That Feel and Think: The Role of Affective Feelings and Mental Action in (Artificial) General Intelligence". Artificial Life. 28 (3 ): 289-309. doi:10.1162/ artl_a_00368. ISSN 1064-5462. PMID 35881678. S2CID 251069071.
^ a b c Clocksin 2003.
^ Fjelland, Ragnar (17 June 2020). "Why general expert system will not be realized". Humanities and Social Sciences Communications. 7 (1 ): 1-9. doi:10.1057/ s41599-020-0494-4. hdl:11250/ 2726984. ISSN 2662-9992. S2CID 219710554.
^ McCarthy 2007b.
^ Khatchadourian, Raffi (23 November 2015). "The Doomsday Invention: Will artificial intelligence bring us paradise or destruction?". The New Yorker. Archived from the initial on 28 January 2016. Retrieved 7 February 2016.
^ Müller, V. C., & Bostrom, N. (2016 ). Future development in expert system: A study of expert opinion. In Fundamental problems of expert system (pp. 555-572). Springer, Cham.
^ Armstrong, Stuart, and Kaj Sotala. 2012. "How We're Predicting AI-or Failing To." In Beyond AI: Artificial Dreams, modified by Jan Romportl, Pavel Ircing, Eva Žáčková, Michal Polák and Radek Schuster, 52-75. Plzeň: University of West Bohemia
^ "Microsoft Now Claims GPT-4 Shows 'Sparks' of General Intelligence". 24 March 2023.
^ Shimek, Cary (6 July 2023). "AI Outperforms Humans in Creativity Test". Neuroscience News. Retrieved 20 October 2023.
^ Guzik, Erik E.; Byrge, Christian; Gilde, Christian (1 December 2023). "The creativity of machines: AI takes the Torrance Test". Journal of Creativity. 33 (3 ): 100065. doi:10.1016/ j.yjoc.2023.100065. ISSN 2713-3745. S2CID 261087185.
^ Arcas, Blaise Agüera y (10 October 2023). "Artificial General Intelligence Is Already Here". Noema.
^ Zia, Tehseen (8 January 2024). "Unveiling of Large Multimodal Models: Shaping the Landscape of Language Models in 2024". Unite.ai. Retrieved 26 May 2024.
^ "Introducing OpenAI o1-preview". OpenAI. 12 September 2024.
^ Knight, Will. "OpenAI Announces a Brand-new AI Model, Code-Named Strawberry, That Solves Difficult Problems Step by Step". Wired. ISSN 1059-1028. Retrieved 17 September 2024.
^ "OpenAI Employee Claims AGI Has Been Achieved". Orbital Today. 13 December 2024. Retrieved 27 December 2024.
^ "AI Index: State of AI in 13 Charts". hai.stanford.edu. 15 April 2024. Retrieved 7 June 2024.
^ "Next-Gen AI: OpenAI and Meta's Leap Towards Reasoning Machines". Unite.ai. 19 April 2024. Retrieved 7 June 2024.
^ James, Alex P. (2022 ). "The Why, wifidb.science What, and How of Artificial General Intelligence Chip Development". IEEE Transactions on Cognitive and Developmental Systems. 14 (2 ): 333-347. arXiv:2012.06338. doi:10.1109/ TCDS.2021.3069871. ISSN 2379-8920. S2CID 228376556. Archived from the original on 28 August 2022. Retrieved 28 August 2022.
^ Pei, Jing; Deng, Lei; Song, Sen; Zhao, Mingguo; Zhang, Youhui; Wu, Shuang; Wang, Guanrui; Zou, Zhe; Wu, Zhenzhi; He, Wei; Chen, Feng; Deng, Ning; Wu, Si; Wang, Yu; Wu, Yujie (2019 ). "Towards synthetic general intelligence with hybrid Tianjic chip architecture". Nature. 572 (7767 ): 106-111. Bibcode:2019 Natur.572..106 P. doi:10.1038/ s41586-019-1424-8. ISSN 1476-4687. PMID 31367028. S2CID 199056116. Archived from the initial on 29 August 2022. Retrieved 29 August 2022.
^ Pandey, Mohit; Fernandez, Michael; Gentile, Francesco; Isayev, O

Comments